ANDHRA LOYOLA COLLEGE (AUTONOMOUS)
 VIJAYAWADA - 520008.
 STATISTICS SPECIMEN COPY

UNIT-I

1. Define axiomatic probability. If A and B are independent events, then show that
i) A and \bar{B}
ii) \bar{A} and B
iii) \bar{A} and \bar{B} are also independent
2. The probabilities of X, Y and Z becoming managers are $\frac{4}{9}, \frac{2}{9}$ and $\frac{1}{3}$ respectively. The probabilities that the bonus scheme will be introduced if X, Y and Z becomes managers are $\frac{3}{10}, \frac{1}{2}$ and $\frac{4}{5}$ respectively.
(i) What is the probability that the bonus scheme will be introduced?
(ii) If the bonus scheme has been introduced, what is the probability that the manager appointed was X?

UNIT-II

3. Define random variable and state its properties. Also explain about types of random variables along with their probability functions.
4. Define distribution function of a random variable. A continuous random variable X has a probability density function $f(x)=3 x^{2} ; 0 \leq x \leq 1$. Find 'a' and ' b ' such that (i) $\quad P(X \leq a)=P(X>a)$ and
(ii) $\quad P(X>b)=0.05$

UNIT-III

5. Define mathematical expectation of a random variable. Also explain any five properties of expectation.
6. Explain Characteristic function of a random variable X along with its properties

UNIT-IV

7. The joint probability density function of X and Y is given by

$$
f(x, y)=A e^{-x-y} ; 0 \leq x \leq y \text { and } 0 \leq y<\infty .
$$

i. Determine A
ii. Show that the total probability is equal to unity
iii. Find marginals.
iv. Find conditional probability density function of Y given $\mathrm{X}=2$.
v. Check the independency.
8. Define conditional probability function. Also Show that the covariance is independent of change of origin but not scale

UNIT-V

9. State and prove Chebychev's inequality. A random variable X takes the values $-1,1,3,5$ with associated probabilities $\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{2}$. Find an upper bound to the probability $\mathrm{P}(|X-3| \geq 1)$ by applying chebyshev's inequality
10. Define the following
(i) Convergence in Probability
(ii) Weak Law of Large Numbers
(iii) Bernoulli's Law of Large Numbers
(iv) Central Limit Theorem
